The Automorphism Group of the Universal Distributive Lattice
نویسنده
چکیده
We describe the normal subgroup lattice of the automorphism groups of the countable universal homogeneous distributive lattice and of the countable atomless generalized Boolean lattice. Also, we show that subgroups of these automorphism groups of index less than 2@0 lie between the pointwise and the setwise stabilizer of a nite set.
منابع مشابه
The uncountable cofinality of the automorphism group of the countable universal distributive lattice
We show that the automorphism group of the countable universal distributive lattice has strong uncountable cofinality, and we adapt the method to deduce the strong uncountable cofinality of the automorphism group of the countable universal generalized boolean algebra.
متن کاملDefinability in substructure orderings, III: finite distributive lattices
Let D be the ordered set of isomorphism types of finite distributive lattices, where the ordering is by embeddability. We study first-order definability in this ordered set. We prove among other things that for every finite distributive lattice D, the set {d, d} is definable, where d and d are the isomorphism types of D and its opposite (D turned upside down). We prove that the only non-identit...
متن کاملEvery Finite Group Is the Automorphism Group of Some Finite Orthomodular Lattice
If L is a lattice, the automorphism group of L is denoted Aut(L). It is known that given a finite abstract group H, there exists a finite distributive lattice D such that Aut(D) £= H. It is also known that one cannot expect to find a finite orthocomplemented distributive (Boolean) lattice B such that Aut(B) s= H. In this paper it is shown that there does exist a finite orthomodular lattice L su...
متن کاملOn the Independence Theorem of Related Structures for Modular (arguesian) Lattices
Let D be a finite distributive lattice with more than one element and let G be a finite group. We prove that there exists a modular (arguesian) lattice M such that the congruence lattice of M is isomorphic to D and the automorphism group of M is isomorphic to G.
متن کاملThe Strong Independence Theorem for Automorphism Groups and Congruence Lattices of Finite Lattices Theorem. Let L C and L a Be Nite Lattices, L C \ L a = F0g. Then There Exists
The Independence Theorem for the congruence lattice and the auto-morphism group of a nite lattice was proved by V. A. Baranski and A. Urquhart. Both proofs utilize the characterization theorem of congruence lattices of nite lattices (as nite distributive lattices) and the characterization theorem of auto-morphism groups of nite lattices (as nite groups). In this paper, we introduce a new, stron...
متن کامل